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LE’ITER TO THE EDITOR 

Ground states of one-dimensional systems and fixed points 
of 2n -dimensional maps 

E Allroth 
Institut fur Festkorperforschung der Kernforschungsanlage Julich, Postfach 1913, D-5170 
Jiilich, West Germany 

Received 24 June 1983 

Abstract. The ground-state problem for discrete one-dimensional systems with interac- 
tions between n -nearest neighbours is connected with 2n-dimensional maps. Fixed points 
of these maps correspond to periodic system configurations. For a general class of systems 
it is explicitly shown for the first time that fixed points with some elliptic character cannot 
represent ground states. 

Among the discrete invertible maps, those which are of special physical importance 
arise by minimising the potential energy or the Ginzburg-Landau free energy F of 
an infinite, discrete one-dimensional system. The trajectories generated by such maps, 
however, represent all energy extrema and not only the ground states or the states 
of thermodynamic equilibrium. Thus it is for theoretical reasons as well as of practical 
interest (e.g. for numerical investigations) to exclude as many sets of trajectories as 
possible from being ground-state candidates. 

Up to now this was done for a class of systems with a one-‘particle’ potential and 
with nearest-neighbour interaction only (Aubry and Le Daeron 1983, Eilenberger 
1983, MacKay 1982); the corresponding maps are two-dimensional. The best known 
member of this class is the Frenkel-Kontorova model 

F { 4 ) =  1 W(di, di+l) = 1 i(di+~-di -A)’+p(l -cos di) 
i i 

and its dynamic analogue, the Chirikov standard map. One of the results for systems 
like this is that periodic ground-state configurations-whose map counterparts have 
to consist of fixed points of the iterated map+an only be represented by hyperbolic 
fixed points, i.e. while owing to area preservation of the investigated two-dimensional 
maps the generic types of fixed points are either elliptic (both eigenvalues A, l / h  of 
the linearised iterated map complex, IA I # 1) or hyperbolic (both eigenvalues A ,  1 / A  # 1 
real), only the mapping-unstable hyperbolic points are possible ground states. Regard- 
ing the inevitable round-off errors of computers, this is of course of special significance 
for all attempts to calculate numerically ground states of higher periodicity. 

The crucial point in proving this hyperbolicity of periodic ground states is the 
‘convexity’ of the nearest-neighbour interaction 

-a2F/a&iadi+l > 0. 
In this letter I shall prove the generalisation of the hyperbolicity of periodic ground 

states to a class of systems not restricted to nearest-neighbour interactions. 

@ 1983 The Institute of Physics L497 
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I consider systems characterised by an energy density 
1 N I 2  

N + CO, where W stands for one-particle energies and interactions between two or 
more particles up to n lattice sites apart. In these general considerations I confine 
myself to systems where the off-diagonal matrix elements a2f/a#,a#, of the investi- 
gated ground state satisfy 

-a2f{cb)/adJ,a#,,, 30. (1) 

A possible ground-state configuration necessarily has to obey the extremum condi- 
tion af{4}/a#, = 0 at all lattice sites i ;  this condition produces the relation 

(a/a#l)(w(#l,. . . ,# l+n)+w(#t- , , .  . . . . . +wL,. . . ,#A)=o.  (2) 

#,+" g ( d h + n - l , .  - . , #I-"), (3) 

Equation (2) has to be singularly resolvable for as a function of . . . , h-,,: 

or similarly for &,, as a function of . . , I$'+,, to guarantee the existence of 
an invertible map. This map is 2n-dimensional because the variables of 2n-neigh- 
boured particles have to be known to generate, via (3), step by step, all the other 
variables. 

Let us now start from any configuration {4'} of periodicity p ,  which means that 
for each j ,  particle j and particle j + p  have the same or some modulo positions. 
Introducing small perturbations E ,  of the periodic particle positions, 

#I = 4: + & I ,  

an expansion of the energy up to second order in the perturbations yields 

with f0{c$") as the energy density of the periodic configuration. If the configuration 
{c$'} is a ground state, and this is assumed in the following, the contribution linear 
in E has to vanish, while the contribution quadratic in E has to be in any case 
non-negative. Because of the range of the interactions the second derivative 
a2fo/a#Pa#p can be non-zero only for l j  - iI s n ; but as no confusion can arise from 
this point, no explicit marking is required. For practical reasons I introduce different 
abbreviations for the second-order fo derivatives: 

so that (4) reads 

The real quantities a ,  b are of course functions of the variables (9') describing the 
p-periodic configurations and hence are invariant to a translation of p lattice sites: 

a k + p  = a k  b k + p , l + p  = b k , l .  ( 6 )  
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While the periodic ground state is represented by fixed points of the p-fold iterated 
2n -dimensional map, the perturbed configurations considered so far do not have to 
be described by trajectories of the map, i.e. do not have to be configurations of 
extrema1 energy. For the investigation of the mapping stability of the fixed points, 
however, one has to consider mapping trajectories that are-at least in a certain region 
of the chain-infinitely close to the fixed-point trajectory. In the linearised approxima- 
tion, these trajectories obey 

o = aAf/aEi = 2aiai - 2 1 bijei. 
j + i  

(7) 

Fixed-point analysis now means that one looks for the 2n eigenvectors and eigenvalues 
of the linearised p-fold iterated map, i.e. one looks for-now generally complex- 
solutions { x }  of (7) reproducing themselves after p lattice sites, despite a factor of A : 

Xlp+r = X ,  . A ‘  

with I = 0, * l ,  k 2 . .  , and r = 1 , 2 . ,  . p. Writingj = mp + t  with m =0, * l ,  * 2 . .  . and 
t = 1, . . . p, (7) yields 

where the prime indicates mp + t # r. 
The solubility condition for the set of p equations like ( 8 )  reads 

det M(A) = 0 (9 )  
with the p x p  matrix 

(Taking into account the symmetry and periodicity of bi,j one can see M,,,(A)= 
Mt,f(l /A), and with ( 9 )  this shows explicitly that the eigenvalues appear in (A, l / A )  
pairs.) 

The same matrix M, but for A = 1, characterises the change in the energy density 
if the perturbation itself is made periodic with period p: i.e. qpcr = E ,  results, with 
equation (9, in 

= p - l ~ T ~ ( ~  = I ) & .  

As it is assumed that our periodic configuration is a ground state, the eigenvalues of 
this real-symmetric matrix M(A = 1 )  have to be non-negative and thus det M(A = 1 )  
has to be non-negative too. In the case of one-particle potentials and convex nearest- 
neighbour interactions only-or for two-dimensionalmaps-only Im I S 1-  terms appear 
in (10) and the property of det M(h = 1 )  together with (9 )  is sufficient already to 
exclude elliptic fixed points (and even alternating hyperbolic points, i.e. hyperbolic 
points with negative eigenvalues) from being possible ground states (Eilenberger 
1983).  Expansion of det M(h) yields in this case 

1 
O=det M(A) =det M(A = 1 ) -  (A + 7 - 2 )  GI 2bf,r+1. ( 1 2 )  
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For convex systems, the product on the right-hand side is positive and hence (12) 
cannot be realised for elliptic or alternating hyperbolic fixed points. 

In the case of longer-ranged interactions-or higher-dimensional maps-the situ- 
ation is more complicated: Iml-values greater than one appear in (10) and hence the 
expansion of det M(A) gives contributions of higher A, A-’ powers. In order to exclude 
for this case certain sets of fixed points from being possible ground states, I consider 
special periodic perturbations in order to demonstrate a contradiction to the ground- 
state assumption. Take E ! , + ~  = E lXrl, where XI, . . . , X, belong to one of the eigenvector 
solutions fulfilling (8) with an eigenvalue A, and E is any (small) real constant. Then 
one has from (11) 

With (8) one can express 

and the last relations give 

Using the symmetry and periodicity of bi,j (see definition and equation (6 ) ) ,  one finally 
arrives at 

A m  A +E r,r m>O 26r,mp+,(IXrICY,I-1XtXr-~XrX:)). (13) 

Now {q57 was assumed to be a ground state, i.e. e.g. Af, equation ( 5 ) ,  has to be 
non-negative. Perturbations of the particle positions with Af = O-if they exist-have 
to be extrema1 configurations of the second-order expansion and hence solutions of 
the linearised map equation (7). If now (and this generic situation will be considered 
in the following) the E part of the modified periodic configuration 

+r+lp =+y+EIXrI (14) 
itself is no solution of the linearised map (for this it is for example sufficient that none 
of the eigenvalues of the considered fixed points is exactly equal to one) then necessarily 
Af, > 0 for this perturbation. Regarding equation (13) with bi,j 2 0, from equation (l), 
the following is obvious. If at least one of the 2n eigenvalues (and this implies, as 
shown, a pair of eigenvalues) is complex and on the unit circle, A = eiv # 1, then 
A “‘X,*Xr + A  -“‘XrX: = 2 Re(A “X,*Xr) C 2lXrlwrI and the periodic configuration (14) 
related to this eigenvalue does not increase the energy, Af, G 0, and thus the configur- 
ation (40) cannot be a ground state, i.e. if the fixed points corresponding to a periodic 
configuration have in an obvious meaning some elliptic character, they cannot be 
possible minima of the energy. 

At this point the following should be mentioned. In the classes of systems for 
which these results are valid, those of Aubry and LeDaeron (1983) are included. 
From their results-xplicitly shown only for nearest-neighbour interactions-one 
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can conclude that the fixed points should have at least one pair of eigenvalues not on 
the complex unit circle to describe periodic ground states. The calculations presented 
here-being much more direct and more easily understood-show that no complex 
eigenvalue may be on the unit circle. 

One example of a system class for which these calculations hold true is 

with rk = 0, 1, 2 . . . . A subclass of this is the mean-field free energy of a ferromagnetic 
Ising model on a d-  dimensional hypercubic lattice with one-dimensional 
inhomogeneity (Pandit and Wortis 1982) 

r M ;  

FI{M} = - x ( H i M i  + TI  ' dy tanh-' y) - lki,jlMiA4,. 
i 0 i.i 

The generalisation of these considerations to more complicated systems-e.g. with 
attracting and repulsing two-particle interactions-requires the confinement to less 
general systems and more subtle perturbations E .  This will be the topic of a subsequent 
paper. 

I would like to thank Professor G Eilenberger for the communication of his results. 
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